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We have measured and simulated particle flow through a single pore and made comparisons
with theory. The simulations are based on an experimental system where particles suspended in
an electrolyte are caused to flow by pressure difference through a pore. Each particle in the pore
gives rise to a pulse in the measured pore resistance. The pulse height is proportional to the
particle volume and the pulse width is given by the particle velocity. In dilute solutions individual
particle pulses can be detected and analyzed, but at higher concentrations the pulses start to overlap
and the signal looks like noise. Measured and simulated signals are analyzed in terms of Hurst’s
rescaled range (the R/S analysis, where R is the range and S the standard deviation) and the power
spectrum. The signal is sampled and we find a clear crossover from persistent behavior (Hurst
exponent H ~ 1) for short times corresponding to the fact that particles reside a finite time in the
pore to an independent process (H ~ 0.5) corresponding to the uncorrelated entry of particles into
the pore. The calculated effective Hurst exponent depends on the time resolution (sampling interval)
used, but R/S curves for different sampling intervals scale when reduced time (sampling interval
divided by pulse width) is included in the analysis and yields a nice data collapse for experiments
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on different types of particles, flow rates, and pore sizes.

PACS number(s): 05.40.+j, 47.15.Pn, 47.60.+i

I. INTRODUCTION

Fractal time series (fractional Brownian motion) have
attracted much attention in many fields of science after
Mandelbrot’s pioneering work (see Refs. [1,2] for a dis-
cussion). For a fractal time series one expects power-law
scaling of statistical measures on the time series. For the
Hurst rescaled-range (R/S) analysis [1-3] one finds for
fractional Brownian motion that R/S ~ 7H, where 7 is
the lag time over which the range R and the variance S
are evaluated. Unfortunately, very large data sets are re-
quired to obtain reliable estimates of the Hurst exponent
H from R/S (or any other statistical measure). With a
more limited data set, spanning only three orders of mag-
nitude in 7, misleading exponents are obtained. In situa-
tions where the data contain crossover from one value of
H for 7 <€ 74 to another value of H when 7 > 7+, one is
easily misled and only an effective exponent is obtained.
We know of only one case where a crossover has been
analyzed — the wave-height statistics of ocean waves off
the Norwegian coast [4] discussed in Chapter 11 in Ref.
[2]. In that case H ~ 0.92 for 7 < 7« and H ~ 0.52 for
T > Tx with 7« ~ 14 days.

In this paper we discuss experiments and simulations
of a simple system that can be easily understood and
that exhibits a clear crossover. We show that rescaling

*Present address: Université Pierre et Marie Curie, Labora-
toire AOMC, boite 78, Tour 13, 4, place Jussieu, 75252 Paris
Cedex 05, France.

1063-651X/94/50(3)/1978(7)/$06.00 50

the results of different experiments to a common data-
collapse plot is a powerful method to use in crossover
situations and allows the determination of H both above
and below the crossover time. The exponents found are
those expected from theory. We also discuss similari-
ties and differences between R/S analysis and the power
spectrum when trying to extract information from a fluc-
tuating signal.

The simulations are based on an experimental system:
the Coulter principle or the resistive pulse technique [5,6].
Particles suspended in an electrolyte give rise to resis-
tance pulses as they traverse a microscopic pore separat-
ing volumes containing the electrodes. In our setup we
use long pores (apertures) to ensure a uniform electric
and hydrodynamic field inside the pore. This minimizes
end effects and the resistive pulses become approximately
rectangular. A sequence of overlapping pulses constitutes
the noise signal. In our system we have control over all
relevant parameters and the underlying process of parti-
cle flow through a pore is well understood.

One intriguing aspect of noise signals is that beneath a
seemingly erratic appearance information about underly-
ing physical processes exists and can be obtained through
appropriate analysis. For ionic systems (similar to our
experiments) chemical reaction kinetics has been deter-
mined from noise measurements [7] and noise measure-
ments have also been used as a means of counting the
number of ions occupying a macroscopic pore [8]. Mem-
brane noise has been an active field of research for many
years [9]. Often the noise is analyzed in terms of the cor-
relation function or its Fourier transform — the power
spectrum. We find the R/S analysis useful in crossover
situations.
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II. EXPERIMENT

Our experimental setup and its novel features have pre-
viously been described [6,10]. Here we briefly recollect
the basic features of the experimental system on which
the computer simulations are based. The central part of
our experimental setup is a cell with two compartments
(~ 1 cm?®) connected by a pore. Each compartment con-
tains a silver, silver-chloride electrode. The two elec-
trodes are connected to a constant voltage source. The
particles to be analyzed are suspended in an electrolytic
solution (0.15M NaCl) which fills the cell. Particles flow
through the pore (typically 20 ym in diameter and 200
pm long) driven by a pressure difference. When a parti-
cle enters the pore, the momentary increase in electrical
resistance of the pore is proportional to the particle vol-
ume and the width of the pulse is a measure of the par-
ticle transit time through the pore, related to the flow
properties [11]. In such a flow system a train of pulses
is generated. The degree to which these pulses overlap
is determined by the particle concentration, which can
easily be varied experimentally.

The pulses were detected using a Keithley model 427
current amplifier with a voltage output. When a par-
ticle enters the pore, the pore resistance increases and
the current decreases. The output of the current ampli-
fier is an equivalent voltage [6]. In the experiment, the
rise time of the signal amplifier and the nonuniformity
of the electric field in the entrance and exit regions of
the pore give rise to bandwidth limited pulses. The high
frequency content of a real pulse is therefore less than
for a rectangular pulse, and this shows up in the power
spectrum.

III. COMPUTER SIMULATIONS

Figure 1 illustrates two rectangular pulses from two
particles passing through a pore and the relevant time
variables involved. The basis for the computer simula-
tions is the following: We assume that the particles en-
tering the pore are uncorrelated, i.e., that the time a
particle enters the pore, t;, is independent of previous
arrival times. This assumption is valid for dilute solu-
tions, though it may break down for concentrated sus-
pensions (not considered here). The time between the
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FIG. 1. A portion of a trace showing two rectangular pulses
and the relevant times. The filled circles indicate the sampled
points. Here %o is the sampling interval, {¢;} are the arrival
times of the pulses, {s;} are the times between the pulses,
and {7:} are the pulse widths.
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arrival of two particles in the pore (the interevent time),
8; = t;41 —t;, is modeled with a Poisson probability den-
sity: P(s) = X exp(—As), where the particle rate A = 1/3.
Here 3 is the average time between particles entering the
pore.

We assume that the particle concentration outside the
pore is uniform and that there is no redistribution of par-
ticles when they enter the pore. However, particles near
the pore wall are slower than particles that move near
the center of the pore axis, and a distribution of pulse
widths results. For small particles in pure Poiseuille flow
the pulse width probability density is well approximated
by P(t) = A/73 [11] [see Eq. (12)], where 7 is the pulse
width and the normalization constant A depends on par-
ticle size. We have used this probability density in the
simulations.

A single pulse may be represented by the expression
(see Fig. 1)

gy JLHGStE<ti+ T
hi (t—t:) = { 0 otherwise, )

where the pulse height has been set equal to 1. For un-
correlated events a sequence of pulses (a trace) can be
represented by a superposition of individual pulses:

£@t) = Z hi (t—t;) . (2)

The average number of particles in the pore, N, is related
to the particle concentration. The choice of A determines
the degree of overlap of the pulses and can be varied by
adjusting 3§ = 7/N, where T is the average pulse width.

The variable parameters used to generate a trace are
the average time between pulses, 3 = 1/, and the min-
imum (Tmin) and maximum (Tmax) pulse width (particle
transit time). The ratio of the maximum and minimum
pulse width is directly related to the particle size (see
Sec. V).

In our simulations the signal length was 16 384 sam-
pled points, where the sampling interval ¢o is the natural
time unit. The sampling interval was chosen equal to
Tmin/25 or less to get an adequate representation of a
rectangular pulse. In Fourier space, this corresponds to
a maximum frequency of 655f,, where fo = 1/16 383t,
is the frequency unit (assuming that the whole interval
of time is contained in the range of points given). One
should think of the minimum pulse width as being fixed
by the experimental situation, while the sampling inter-
val can be varied for a given experiment.

In the simulations the effective particle concentration
can be changed by varying the time between pulses. For
each generated trace of 16 384 points, the fast Fourier
transform (FFT) and power spectrum were calculated us-
ing a Parzen window function [12]. The choice of window
function was not critical: a square window gave practi-
cally the same results. By averaging typically 1000 power
spectra we obtained a spectrum with little noise. In or-
der to approach the correct statistics of the underlying
process averaging is necessary since there will be fluc-
tuations in the statistics (pulse width distribution and
interevent time distribution) of different traces of finite
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length. For traces containing a small number of pulses
(mostly nonoverlapping), averaging is necessary to ob-
tain a sufficient number of particles, while for traces con-
taining a large number of overlapping pulses, averaging is
necessary to separate correlated and uncorrelated events.

Examples of simulated signals are shown in Fig. 2
(10000 points per trace have been plotted). The upper
trace is for an average number of particles in the pore
N = 9700, while the other four all have a much lower
concentration, corresponding to A = 20. The upper two
traces are equivalent except for different particle concen-
trations. Note that the nature of the noise is not affected
by the concentration. The figure illustrates how the ap-
pearance of the signal depends on the sampling interval:
The four lower traces all correspond to the same experi-
mental situation (the same concentration and minimum
pulse width), but probing different frequency regimes.
The sampling interval ¢, was varied for each trace as
follows (starting from the lower trace): Tmin, Tmin/25,
Tmin/ 100, Tmin/1000, and 7min/1000, respectively. In all
cases, the ratio of the maximum to minimum pulse width
was equal to 10. This corresponds to a particle to pore
diameter ratio of about 0.05. By changing the time res-
olution, we can continuously change the noise from ap-
proximately white 1/f° to Brownian 1/f2. This will be
discussed in the following both in terms of R/S analysis
and in terms of power spectra.
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FIG. 2. Examples of simulated traces for varying resolu-
tion in time (sampling interval). All traces consist of 10000
sampled points. The upper trace is for an average number of
particles in the pore N' = 9700, while the other four all have
a much lower concentration, corresponding to N’ = 20. The
sampling interval was varied for each trace as follows (starting
from the lower trace): to = Tmin, to = Tmin/25, to = Tmin/100,
to = Tmin/1000, and to = Tmin/1000, respectively. The ratio
of the maximum to the minimum pulse width was equal to 10
for all cases.
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IV. THE HURST EXPONENT

Records in time of various phenomena can be analyzed
in terms of Hurst’s rescaled range analysis [1,2]. The
records are characterized by an exponent H — the Hurst
exponent, which can be related to the fractal dimension
of the trace of the record. For the R/S analysis of a signal
& measured with a sampling time o consisting of a total
of Nr sampling intervals (Nr + 1 points), {(n) (at time
t = nto) is divided into smaller independent portions of
equal length. Each portion contains N sampling inter-
vals, where N < Np. The average of £(n) over a time
period containing N sampling intervals, (£ )n, is calcu-
lated and the standard deviation S(NN) of £(n) is also
calculated for the same time period. The cumulative sig-
nal is then calculated:

X(n,N) =) [€(u) — (€)n] . 3)

The range R(N) is defined as the peak to peak value
of X(n,N). Hurst found that the rescaled range, R/S,
often is well described by the empirical relation

R/S = (N/2)H . (4)

For a given time record, R/S is calculated as a function of
N. For each value of N < Nr, we have several indepen-
dent estimates of R/S and the final value is the average
of all of them. The Hurst exponent H is the slope in a
log-log plot, where 0 < H < 1. For a satistically inde-
pendent process (Brownian motion) it has been shown
[13,14] that R/S = (7N /2)'/2.

The Hurst exponent can also be related to the expo-
nent 3 of the power spectrum: G ~ 1/f?. An observed
signal, V (t), can either be interpreted as the noise itself,
£ =V, or as the cumulative signal of an underlying noise
process, X = V. In the first case § = 2H — 1 with
—1 < B8 < 1 and in the second case 8 = 2H + 1 with
1 < B < 3 [15,16]. The difference of 2 in the 3 values
comes from integrating the signal in the first case or tak-
ing the derivative in the second case. As an example,
the cumulative signal of white noise (3 = 0) is Brownian
motion (3 = 2). Taking white noise as the noise signal
and integrating to determine the range R gives H = 0.5
and 8 = 2H — 1 = 0. Likewise, taking Brownian mo-
tion as the integrated signal and taking the derivative to
determine the standard deviation S gives H = 0.5 and
B =2H +1 = 2. It is not clear how close to the bounds
these relations are valid for finite samples of V'(t), and
care must be taken in their use and interpretations.

We will compare the results of R/S analysis with that
of the power spectrum for a case where the frequency
dependence varies from 3 = 0 at low frequencies to § ~ 2
at high frequencies. The effect of this crossover on the
estimated Hurst exponent will be discussed.

V. THE POWER SPECTRUM
The correlation function C(7) is defined by [17]

Cry=vV@EVviE+r), (5)
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where the bar denotes a time average and V(t) is the
difference between the current amplifier output voltage
and its average value. The autocorrelation function is
nonzero over a time span where the events are causally
related in the voltage signal, determined by the pulse
width 7.

For rectangular particle pulses the autocorrelation
function becomes (7 > 0)

= ZNk(AVk)z (1 - %) y T S Tmax; (6)
k
where Ny, AVy, and i are the average number of par-
ticles in the pore, the pulse height, and the pulse width
of the kth class of particles. For times longer than the
maximum pulse width (Tpax), the autocorrelation func-
tion is equal to zero. The sum includes all classes of
pulse widths 7, > 7. This expression can be used, for
instance, in the case of electrophoretic particle flow (8]
or in the present case, as an approximation to the con-
tinuous spread in pulse widths in pure Poiseuille flow. In
the case of particles in Poiseuille flow, a class k particle
includes all particles having pulse widths in a subinterval
about 7.
If Py is the probability of having pulse widths in a
subinterval about 7, then we have the relation

Ni
N
Here N is the average number of particles in the pore,
N = Y, Nk, and T is the average pulse width, 7 =

> & PiTi. In terms of the probability Py, the autocorre-
lation function can now be written

C(r) = N(AV)? Zpkrk(1——),fgfm. (8)

=p
=P —. (7)

It has been assumed that the particles are monodisperse,
i.e., AVy = AV. The power spectrum G(f) is the Fourier
transform of the autocorrelation function (the Wiener-
Khinchin relation) and we obtain

G(f) = N(AV)? ZP (sm"f”‘). (9)

7r_f‘rk

The amplitude of the power spectrum is

| *NI

G(0) =

where 72 = 3, P72
The probability of having pulse widths in an interval
about 73 is

N(AV)? (10)

Th+1/2
P = / P(r)dr, (11)

k—1/2

where we use the fact that the sampled pulse width can
only differ in units of ¢y, and we have chosen to discretize
the width probability density P(7) into classes of width
to. For small particles in pure Poiseuille flow P(7) is
given by [11]

P(r) = 212, [1— (:‘“‘“) ] = (12)

The minimum pulse width is determined by the maxi-
mum fluid flow velocity and the maximum pulse width is
essentially determined by the particle size, which limits
how close the center of the particle can come to the pore
wall where the fluid velocity is zero. The average pulse
width is given by

-1
T = 27in (1 + T"‘"‘) , (13)

Tmax

and the average of the pulse width squared is

29-1
2 =272, [1- Tmin In Tmi“ . (14)
Tm&x Tmln

The ratio Tmin/Tmax = 2 , where z,, =1— (d/D) is
the maximal fractional off-axis displacement of the cen-
ter position of the particle, valid for small particle sizes.
In this model we assume that the particles follow stream-
lines and do not perturb the flow.

VI. RESULTS AND DISCUSSION
A. Simulations

The appearance of the traces shown in Fig. 2 clearly
depends on the time that we choose to sample the sig-
nal. This is in contrast to a fractal signal where the ap-
pearance does not depend on the resolution. Performing
R/S analysis on time records measured with our system
showed that the Hurst exponent varied from 0.5 to 1
when the measured trace was taken as the noise signal.
This is illustrated in Fig. 3 for three of the simulated
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FIG. 3. log,,(R/S) as a function of log,,(IN) for three of
the simulated traces shown in Fig. 2. For each trace, the
points have been connected by dashed lines. The sampling
interval was varied for each trace as follows: o = Tmin (filled
circles), to = Tmin/25 (open squares), and to = Tmin/1000
(filled squares). The plotted curves were averaged ten times.
Linear fits including all points for each case give average Hurst
exponents of 0.58, 0.78, and 0.95, respectively.
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traces of Fig. 2. Trying to understand this and its con-
nection to the power spectrum motivated this study to
serve as a guide for future experiments.

The resolution in time is determined by the sampling
interval ¢t which is the time between two sampled points.
Physical time is t = Nto. By scaling the axes in Fig. 3
with reduced time (t — t/Tmin = Nto/Tmin), Wwe found
a beautiful data-collapse of simulated R/S curves taken
in different frequency regimes. Figure 4 shows that the
effective Hurst exponent changes when we move from the
low frequency to the high frequency regime. The figure
shows the same R/S curves as shown in Fig. 3 but with
both axes scaled with reduced time, to/7min. The plotted
lines have slopes of 1 and 0.5. We see a clear crossover
from the high frequency regime (short times) where the
calculated Hurst exponent is close to 1, through an inter-
mediate regime where the relevant flow dynamics takes
place, and a low frequency regime (long times) where
the Hurst exponent approaches 0.5 (uncorrelated white
noise). The crossover time appears to be near Tpax. A
similar crossover has previously been observed in wave-
height statistics [4].

A Hurst exponent larger than 0.5 implies persistence
[2]: an increasing (decreasing) trend in the past implies
an increasing (decreasing) trend in the future. Our sys-
tem should be persistent for times smaller than the max-
imum transit time: when a particle enters the pore, we
know that the signal will be high until the particle exits
the pore. The figures illustrate the impact of crossovers
in a given system and it shows that the value of the
Hurst exponent in such a system will depend on the reso-
lution (sampling interval), unless data-collapse methods
are used.

Simulated and theoretical power spectra for a Poisson
sequence of rectangular pulses with a pulse width distri-
bution are shown in Fig. 5. The normalized spectrum,
G(fTmin)/G(0) and frequency, f7min, are both plotted on
a logarithmic scale. The three lower curves show simula-
tions and theory for maximum to minimum pulse width
ratios of 100, 10, and 3 (starting from the bottom). The
sampling interval £ = Tmin/25 for all three cases and
the average number of particles in the pore were 98, 18,
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FIG. 4. logio[(R/S)(to/Tmin)] as a function of

log10[N(to/Tmin)] for the R/S curves shown in Fig. 2. The
lines have slopes equal to 1 and 0.5. Both axes have now been
scaled by reduced time to obtain the data collapse.
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FIG. 5. Simulated and theoretical power spectra for a Pois-
son sequence of rectangular pulses with a pulse width distri-
bution. The normalized spectrum and frequency have both
been plotted on a logarithmic scale. The three lower curves
show simulations and theory for maximum to minimum pulse
width ratios of 100, 10, and 3 (starting from the bottom). The
upper curve shows the theoretical power spectrum for the lim-
iting case of constant pulse width. For the lower curves the
deviation between simulations and theory is visible only at
high frequencies.

and 0.25, respectively. The simulated power spectra have
all been averaged 1000 times. The agreement between
theory and simulations is excellent and involves no ad-
justable parameters. The deviations at high frequencies
are due to the limited number of points (25) used to
represent the rectangular pulse. The upper curve shows
the theoretical power spectrum for the limiting case of
constant pulse width. However, no data collapse is pos-
sible for the power spectra since the shape of the spectra
changes as the particle size (pulse width) changes.
When comparing Figs. 4 and 5 we clearly see the sim-
ilarities: both figures show a varying frequency depen-
dence. However, the crossover is very slow, and a large
frequency range is necessary to clearly see the crossover;
Fig. 4 covers effectively seven decades in reduced time.
The R/S curve can be obtained without much averag-
ing, which is not true for a good power spectrum. The
power spectra are dominated by oscillations in the high
frequency regime that stem from the Fourier transform
of the square pulses that make up the signal. Since the
power spectra do not allow a data collapse we cannot
determine reliable scaling exponents for the signals dis-
cussed here. A limitation of R/S analysis is that H is
restricted between 0 and 1. When using the signal as
noise as we have, the upper bound for 3 is 1, while the
signals in our case also contain high frequency compo-
nents, up to B = 2. The R/S analysis does not distin-
guish these higher frequencies well. In terms of the Hurst
exponent all 3 values larger than 1 come out with H close
to 1. Close to the bounds it is not clear how to relate
the Hurst exponent H to the power spectrum exponent
B for sampled signals. So when the Hurst exponent at
high frequencies in Fig. 4 saturates close to 1, we cannot
determine 3 correctly. If we instead use the signal as the
cumulative signal, covering 1 < 3 < 3, we find a Hurst
exponent close to 0.5 which gives the correct 8 value in
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the high frequency limit.

The power spectrum is a second order statistic whereas
R/S is a first order statistic. In practice the R/S analysis
is sensitive to long-term trends, but insensitive to high
frequency noise.

B. Measurements

R/S analysis has also been performed on measured
traces up to 16 384 points in length and sampling inter-
vals from 0.1 ms to 50 ms. Pore and particle sizes have
been varied, so have the flow velocity and the time res-
olution. Results are shown in Fig. 6 where the figure
caption gives the experimental parameters for the differ-
ent curves. The plotted lines have slopes of 1 and 0.5.
We again see the nice data collapse of individual R/S
curves when the axes are scaled with reduced time. For
short times (high frequencies) the slope is close to one
as before (Fig. 2). For longer times (smaller frequencies)
the slope approaches 0.5. In contrast to the simulations
the experiments show an increase in the slope for very
long times, indicating that there is some excess noise in
the very low frequency regime.

The excess noise in our experiments typically appears
around 0.1 Hz, which is quite low (in Ref. [7] only data
above 20 Hz were taken). The fact that the same effect
appears in an open circuit has led us to believe that it
at least partly is due to amplifier noise, since amplifiers
normally show some excess noise at low frequencies. We
therefore feel that with our present setup it is not trivial
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FIG. 6. Data collapse of R/S as a function of N.
logio[(R/S)(to/Tmin)] as a function of logio[N(to/7min)] for
six experimental situations. For each trace, the points have
been connected by dashed lines. Open circles: 1 um diameter
spheres flowing through a 27 ym diameter and 540 um long
pore with minimum pulse width equal to 5 ms and sampling
intervals 0.1 ms and 5 ms, respectively. Filled circles, same
as above except for minimum pulse width equal to 2 ms and
sampling interval 0.1 ms. Triangles: ion flow (0.15M NaCl; no
particles added to the electrolyte) through the same pore with
minimum transit time 13.5 ms and sampling interval 50 ms.
Squares: 0.19 pm diameter particles flowing through a 10 um
diameter and 100 pm long pore with minimum pulse width
equal to 4.2 ms and sampling intervals 1 ms (filled squares)
and 10 ms (open squares).
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to resolve this issue. Possibly excess noise may also be
due to very long time correlations in the fluid flow. This
is an open question at this stage, but an interesting one.
We have, however, not attempted to go into this in the
present investigation where we concentrate on crossover
phenomena.

A comparison between measured and calculated [Eq.
(9)] power spectra is shown in Fig. 7. The pore was a
cylindrical glass capillary with diameter D = 70 ym and
length L = 570 pm. The particles were monodisperse
polystyrene spheres with diameters d = 3 pm (lower
curves) and 15 um suspended in 0.15M NaCl in distilled
water. The average number of particles in the pore was
460 and 0.27, respectively. A DATA 6000 wave form
analyzer (Data Precision Corp., USA) was used to com-
pute and average the power spectra from each measured
signal consisting of 4096 points. Both spectra were av-
eraged 400 times. The sampling interval was 0.2 ms and
the minimum pulse width 5 ms for both experiments.

We see that the agreement between measurements and
theory is quite good. For the 15 pum particles it was neces-
sary to take into account that large particles lag the flow:
this increases Tinax/Tmin from 2.6 to 3.35 (see Ref. [11] for
details) and improves the agreement with theory. Both
theoretical curves have been plotted for comparison. The
experimental curves lie lower than theory at high frequen-
cies due to the finite rise time of the real pulses.

VII. CONCLUSIONS

We have studied conductance fluctuations due to the
presence of particles in a current carrying pore. This sys-
tem has a crossover in the power spectrum from approx-
imately white noise at low frequencies to 1/f2 at high
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FIG. 7. A comparison between measured and theoretical
[based on rectangular pulses: Eq. (9)] power spectra plotted
on a logarithmic scale. The two cases are for 15 um (upper
curves) and 3 pm (lower curves) diameter polystyrene spheres
flowing through a 70 pgm diameter and 540 ym long glass
capillary. For the large particles the theoretical curve has
been plotted for two values of Tmax/Tmin: 2.6 and 3.35. The
latter corrects for the fact that large particles lag the flow and
it clearly gives the best agreement with the experiment. The
minimum pulse width was 5 ms and the sampling interval 0.2
ms for both cases.
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frequencies. For the power spectrum we find good agree-
ment between simulations, theory, and measurements.
However, a data collapse with a clear crossover is not
possible. It appears that a well defined model (simu-
lation) is needed in order to interpret the power spec-
trum. The R/S analysis, on the other hand, allows a
data collapse of R/S curves based on time records with
different sampling intervals, and different parameters for
the experiments. The crossover from persistent behavior
(H ~ 1) to independent behavior (H =~ 0.5) is clear both
in simulations and in experiments. It is important to
be aware that the estimated Hurst exponent will depend
on the sampling interval for a system with a crossover
for any given time series. Unless data are available for
a large dynamical range (i.e., N spans many orders of
magnitude) crossover effects dominate, and the effective
Hurst exponent tends to be H near 0.75.

The four lowest curves in Fig. 2 represent the same
physical situation and differ only in the sampling time
to. Thus if an experimentalist adjusts the sampling time
while watching the resulting time trace on a screen, what
sampling time would she choose? tg; = Tuin/1000 is a
too high time resolution and the long-term trends are
not properly exhibited in the record. For tq = Tmin/1
the trace looks like uninteresting white noise. So a rea-
sonable choice would be in the range ty = Tmin/100 to

to = Tmin/25. But then, if she is unaware of the under-
lying crossover from persistent to random behavior, she
would fit the resulting R/S curve over a few decades and
find an (effective) Hurst exponent of H ~ 0.75 near the
average of the H values obtained by Hurst (see Ref. [2]).
Thus intuitively one tends to select data that give a non-
trivial Hurst exponent and if the crossover is slow the fit
may be quite good. We therefore strongly urge the use
of data-collapse methods in situations where an external
parameter may be varied (the pore length, the pressure
difference over the pore, the particle size, and the sam-
pling time in our case) so that crossover phenomena can
be discovered.
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